Binding for ggplot2::geom_sf()
, therefore it supports
only sf
objects.
Arguments
- mapping
Set of aesthetic mappings created by
aes()
. If specified andinherit.aes = TRUE
(the default), it is combined with the default mapping at the top level of the plot. You must supplymapping
if there is no plot mapping.- data
The data to be displayed in this layer. There are three options:
If
NULL
, the default, the data is inherited from the plot data as specified in the call toggplot()
.A
data.frame
, or other object, will override the plot data. All objects will be fortified to produce a data frame. Seefortify()
for which variables will be created.A
function
will be called with a single argument, the plot data. The return value must be adata.frame
, and will be used as the layer data. Afunction
can be created from aformula
(e.g.~ head(.x, 10)
).- stat
The statistical transformation to use on the data for this layer. When using a
geom_*()
function to construct a layer, thestat
argument can be used the override the default coupling between geoms and stats. Thestat
argument accepts the following:A
Stat
ggproto subclass, for exampleStatCount
.A string naming the stat. To give the stat as a string, strip the function name of the
stat_
prefix. For example, to usestat_count()
, give the stat as"count"
.For more information and other ways to specify the stat, see the layer stat documentation.
- position
A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The
position
argument accepts the following:The result of calling a position function, such as
position_jitter()
. This method allows for passing extra arguments to the position.A string naming the position adjustment. To give the position as a string, strip the function name of the
position_
prefix. For example, to useposition_jitter()
, give the position as"jitter"
.For more information and other ways to specify the position, see the layer position documentation.
- na.rm
If
FALSE
, the default, missing values are removed with a warning. IfTRUE
, missing values are silently removed.- show.legend
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.FALSE
never includes, andTRUE
always includes.You can also set this to one of "polygon", "line", and "point" to override the default legend.
- inherit.aes
If
FALSE
, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g.borders()
.- keep
numeric, proportion of points to retain (0.05-5.0; default 0.5). See Details.
- method
character, either
"voronoi"
(default) or"straight"
, or just the first letter"v"
or"s"
. See Details.- simplify
logical, if
TRUE
(default) then the centerline will be smoothed withsmoothr::smooth_ksmooth()
- ...
Other arguments passed on to
layer()
'sparams
argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to theposition
argument, or aesthetics that are required can not be passed through...
. Unknown arguments that are not part of the 4 categories below are ignored.Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example,
colour = "red"
orlinewidth = 3
. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to theparams
. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.When constructing a layer using a
stat_*()
function, the...
argument can be used to pass on parameters to thegeom
part of the layer. An example of this isstat_density(geom = "area", outline.type = "both")
. The geom's documentation lists which parameters it can accept.Inversely, when constructing a layer using a
geom_*()
function, the...
argument can be used to pass on parameters to thestat
part of the layer. An example of this isgeom_area(stat = "density", adjust = 0.5)
. The stat's documentation lists which parameters it can accept.The
key_glyph
argument oflayer()
may also be passed on through...
. This can be one of the functions described as key glyphs, to change the display of the layer in the legend.
CRS
coord_sf()
ensures that all layers use a common CRS. You can
either specify it using the crs
param, or coord_sf()
will
take it from the first layer that defines a CRS.
Combining sf layers and regular geoms
Most regular geoms, such as geom_point()
, geom_path()
,
geom_text()
, geom_polygon()
etc. will work fine with coord_sf()
. However
when using these geoms, two problems arise. First, what CRS should be used
for the x and y coordinates used by these non-sf geoms? The CRS applied to
non-sf geoms is set by the default_crs
parameter, and it defaults to
NULL
, which means positions for non-sf geoms are interpreted as projected
coordinates in the coordinate system set by the crs
parameter. This setting
allows you complete control over where exactly items are placed on the plot
canvas, but it may require some understanding of how projections work and how
to generate data in projected coordinates. As an alternative, you can set
default_crs = sf::st_crs(4326)
, the World Geodetic System 1984 (WGS84).
This means that x and y positions are interpreted as longitude and latitude,
respectively. You can also specify any other valid CRS as the default CRS for
non-sf geoms.
The second problem that arises for non-sf geoms is how straight lines
should be interpreted in projected space when default_crs
is not set to NULL
.
The approach coord_sf()
takes is to break straight lines into small pieces
(i.e., segmentize them) and then transform the pieces into projected coordinates.
For the default setting where x and y are interpreted as longitude and latitude,
this approach means that horizontal lines follow the parallels and vertical lines
follow the meridians. If you need a different approach to handling straight lines,
then you should manually segmentize and project coordinates and generate the plot
in projected coordinates.
Examples
# \donttest{
if (requireNamespace("geomtextpath", quietly = TRUE)) {
library(sf)
library(ggplot2)
lake <-
sf::st_read(
system.file("extdata/example.gpkg", package = "centerline"),
layer = "lake",
quiet = TRUE
)
ggplot() +
geom_sf(data = lake) +
geom_cnt(
data = lake,
keep = 1,
simplify = TRUE
) +
theme_void()
}
# }